Dimensioning of riparian buffer zones in agricultural catchments at national level

Evelyn Uuemaa, Ain Kull, Kiira Mõisja, Hanna-Ingrid Nurm, Alexander Kmoch

Landscape Geoinformatics Lab, University of Tartu, Estonia

evelyn.uuemaa@ut.ee

Intro

The New Zealand experience

The New Zealand experience

Measures to reduce the agricultural pollution

- Fencing
- Buffer strips from native vegetation

• Wetlands

The main functions of riparian buffer zones

(Mander et al. 2005; Polyakov et al. 2005)

- 1) Nutrient removal from surface flow;
- 2) Preventing erosion;
- 3) Carbon sequestration;
- 4) Limit the growth of higher plants in the waterbodies by shading;
- 5) Improve microclimate;
- 6) Provide habitat, increase landscape connectivity

The width of a buffer zone depends on the function

The Wider the Buffer the Greater the Benefits

Source: Tennessee Urban Riparian Buffer Handbook

Identifying the optimal riparian buffer zone widths at high resolution for the whole

Estonia

Nomograph for determination of the recommendable buffer zone width

(Mander and Kuusemets, 1998)

Inputs for the nomograph

5M RESOLUTION DIGITAL ELEVATION MODEL

SOIL MAP

flow accumulation

Pollution risk

· Based on nomograph calculations, we created pollution risk classes

Pollution risk class		Recommendable buffer	
number	Pollution risk	width	
1	Very low	1 - 5 m	
2	Low	6 - 10 m	
3	Medium	11 - 20 m	
4	High	<mark>gh</mark> 21 - 40 m	
5	Very high	41 - 100 m	

The presence of higher vegetation near the streams

Pollution risk class			
number	Pollution risk	Natural streams	Drainage
1	Very low	55.9%	56.9%
2	Low	60.6%	43.5%
3	Medium	66.2%	42.7%
4	High	72.0%	43.4%
5	Very high	78.4%	54.0%

Example in Southwest
Estonia where pollution risk
due to slope and soil type is
high and there is no higher
vegetation close to the
stream

https://puhverribad.web.app/

■ Veekaitsevööndite reostustundlikkus (ja soovituslik puhverriba laius)

ABOUT

Thank you! Questions?

evelyn.uuemaa@ut.ee

@LGeoinformatics

